

ShortBOL tutorial

Introduction

Welcome to the ShortBOL Tutorial. ShortBOL is a scripting language, designed to be easy to use,
powerful and extensible. ShortBOL is based around structured text to capture your ideas, and
doesn't require any prior coding skills. When these scripts are run, they generate SBOL files which
can then be used to derive the DNA sequences for your design from its parts, generate diagrams,
and can be loaded into any SBOL-compliant computer-aided genome design tools.

This tutorial will get you up to speed in how to rapidly prototype synthetic biology designs with
ShortBOL. It works through several steps to introduce the language, and give you practical
experience using it to capture your designs. Our running example is a TetR/LacI toggle switch (see
Gardner 2000). By the end of the tutorial, you will be able to represent the toggle switch structure
and behaviour in ShortBOL and be able to run this script to generate an SBOL file that can then be
used in any SBOL-compliant tooling. We then move on to develop a more complex example using
CRISPR as described by Crispr transcriptional repression devices and layered circuits in mammalian
cells.

Downloading and installing ShortBOL

1. Download or clone the ShortBOL repository:
git clone https://github.com/intbio-ncl/shortbol.git

2. Navigate to your install directory
3. Install dependencies with: python setup.py install –user
4. Test the installation using the simple example provided

• simple_example.rdfsh in the /examples folder is a design for a single promoter with

its associated sequence
• Compile the simple_example.rdfsh file with python run.py -s sbolxml

examples/simple_example.rdfsh -o <output-file>

• <output-file> is the name of the desired SBOL XML-RDF file

Designing a genetic toggle switch

1) Adding basic parts

We're going to start by building the ShortBOL for the TetR inverter of the TetR/LacI toggle switch.
The TetR inverter couples a tetracycline-repressed promoter with the lacI coding sequence, so that
in the absence of tetracycline, LacI is produced. We are going to describe the design of the TetR
inverter using ShortBOL. Create a text document containing the following:

pTetR_prom is a Promoter()

lacI_CDS is a CDS()

These two lines simply declare a promoter called pTetR, and declare a complement determining
an open reading frame, or coding sequence (CDS) called lacI. Comments an be added to the
script. Any line starting with a pound '#' character is treated as a comment, and ignored. Blank
lines can also be added for formatting and are also ignored.

2. Adding properties to SBOL components.

So far we have created a promoter and a CDS and named them. In ShortBOL, we call pTetR and

lacI_CDS instances. An instance is any thing that you have named as part of your description of

your design. It may be a piece of DNA, or a large biological module, or a reference to a simulation, or
perhaps a publication or co-worker. Instance names are case-sensitive, so pTetR and PTetR are

different instances, as the case of their leading letter differs. You can choose any name you like for
an instance. The name is there to refer to it within your script. However, by choosing meaningful
names, you will make the script easier to read and understand.

With ShortBOL we can attach properties and values to instances. ShortBOL uses brackets to make
lines ‘properties of' a containing instance. For example, we can add a human-readable description
and comments to pTetR like this:

Comments are not carried through to the final SBOL representation, so use them to document your
script, for people who will read it in the future (probably you!) and may need some hints.
Information needed to understand your design, rather than your script, needs to be added as
properties like description, as these are available from an SBOL design.

You can add any names and values you like to an instance. It is perfectly fine for you to make new
ones up as you need them. However, some names mean something special within
the SBOL standard. You will frequently use these two SBOL properties for documenting your design:

• description: associates a human-readable descriptions with things. This can be an

extended block of text, that tells us more about an instance.

Declare a promoter named pTetR

pTetR is a Promoter()

lacI_CDS is a CDS()

Declare a promoter named pTetR

pTetR is a Promoter()

(

give pTetR a description

 description = "pTet promoter"

)
lacI_CDS is a CDS()

• name: a human-readable name, possibly including spaces and special characters. For

our pTetR, a good choice of name would be "pTetR".

Exercise 1:

Start with the provided skeleton script and modify it so that lacI has the name "lacI",

description "LacI protein coding region. Don't forget your brackets around the property names.

The answers can be found at the end of this document.

Answer 1:

3. Working with types.

In the previous example, we created instances to represent pTetR and lacI in the TetR inverter
device, and gave them names, descriptions and displayIds. When we put it all together,

that example looks like this:

Let's look at this example again. It declares two instances, a Promoter called pTetR and
a CDS called lacI. The Promoter and CDS are types. They say what sort of thing pTetR and LacI are.

Declare a promoter named pTetR

pTetR is a Promoter()

(

give pTetR a description

 description = "pTet promoter"

)
lacI_CDS is a CDS()

(

 # Properties of lacI CDS

 name = “lacI”

 description = “LacI protein coding region”

)

Declare a promoter named pTetR

pTetR is a Promoter()

(

give pTetR a description

 description = "pTetR promoter"

)
lacI_CDS is a CDS()

(

 # Properties of lacI CDS

 name = “lacI”

 description = “LacI protein coding region”

)

In ShortBOL, whenever you declare an instance, you construct it with a type. The name of the type is
linked to the name of the instance with ‘is a’ to denote that the instance is a type of something. A

type can be distinguished from an instance since it will have a “()” suffix which indicates the tyoe
constructor. A constructor can be used to initialise values of properties in an instance when it is
created. More about this later in the section on creating sequences.

SBOL provides a pallet of types that can be used in your designs for all the common types of genetic
parts. Here are some of the ones you may use most frequently:

Promoter: A genomic region where transcription is initiated.
CDS: A complement determining sequence; a genomic region that encodes a protein.

Terminator: A genomic region that terminates transcription.
RBS: A ribosome binding region, where the ribosome will bind to a transcript.

Operator: A region where proteins bind to regulate transcription.

You can add any number of these genetic parts to your design. Just give them each a unique name
within your script.

Exercise 2:

The TetR inverter is made of four parts. A promoter, RBS, CDS and terminator. Edit the design above
to include additional instances for an RBS instance called lacI_RBS and a Terminator instance called
lac_term.

Answer 2:

Declare a promoter named pTetR

pTetR is a Promoter()

(

give pTetR a description

 description = "pTet promoter"

)

Declare a CDS named pTetR

lacI_CDS is a CDS()

(

 # Properties of lacI CDS

 name = “lacI”

 description = “LacI protein coding region”

)

Declare a RBS named lacI_RBS

lacI_RBS is a RBS()

(

 name = “lacI_RBS”

 description = “RBS for the lacI CDS”

)

Declare a terminator named lacI_term

lacI_term is a Terminator()

(

 name = “lacI_term”

 description = “Terminator for the lacI CDS”

)

4. Adding sequences

Ultimately, when you build a genetic design, you need the corresponding DNA sequence. Each
individual genetic part in your design will have its own sequence, and the sequence of the whole
design is composed from these. ShortBOL has a type called DnaSequence that lets you specify a
DNA sequence, and a property sequence that lets you associate this with an instance representing

a genetic part. e.g.

Here we have constructed a DnaSequence named lacITSeq, and rather than setting a property,
the DNA sequence string is passed into the DnaSequence constructor. ShortBOL instances are

often created by giving the type constructor some values to work with. The constructor will use
these to set up properties for you.

Now that we know how to make a sequence, we need to attach it to the corresponding part. This is
done in the same way that we set the name, description and displayId for the parts
earlier. SBOL defines a property called sequence that links from a genetic part back to the sequence
it has. This time, rather than quoting the value, we use the naked value. This tells ShortBOL that we
are linking to another instance, rather than capturing some text. Instances are always linked by the
name that their ShortBOL instance was declared with, rather than by the value of their name, or any
other data property.

Exercise 3: Edit the shortbol above to also include a new promoter pTetR with its own sequence

lacITSeq is a DnaSequence ("ttcagccaaaaaacttaagaccgccggtct

tgtccactaccttgcagtaatgcggtggacaggatcggcggttttcttttctcttctcaa")

lacITSeq is a DnaSequence ("ttcagccaaaaaacttaagaccgccggtct

tgtccactaccttgcagtaatgcggtggacaggatcggcggttttcttttctcttctcaa")

lacIT is a Terminator()

(

 sequence = lacITSeq

)

Answer 3:

Designing a CRISPR logic gate

5. Composition

A core principle of synthetic biology design is that larger designs are built up from smaller, well-
validated components. This paradigm is exemplified by BioBricks, an assembly standard and parts
registry of genomic parts. The SBOL data standard provides a lot of tooling for describing how a
design is composed.

In this tutorial, we are going to look at several strategies for using ShortBOL to compose a larger
design from smaller ones, by building up the TetR inverter from its component parts using the
approach specified in the SBOL specification document.

In the tutorial exercise 2 above, we made instances for the four parts of the TetR inverter device.
However, we stopped short of assembling them into a composite device. The SBOL type for a
composite DNA device is a type of ComponentDefinition called a DnaComponent.

Components are used to compose objects into a structural hierarchy of a DnaComponent

To place the genetic parts we've made within a larger DnaComponent, we create a Component
from each DnaComponent to be composed and then send each of these components

the component property of DnaComponent as shown below in example 1:

lacITSeq is a DnaSequence ("ttcagccaaaaaacttaagaccgccggtct

tgtccactaccttgcagtaatgcggtggacaggatcggcggttttcttttctcttctcaa")

pTetRSeq is a DnaSequence

(“tccctatcagtgatagagattgacatccctatcagtgatagagatactgagcac”)

)

lacIT is a Terminator()

(

 sequence = lacITSeq

)

pTetR is a promoter()

(

 sequence = pTetRSeq

)

http://biobricks.org/

Example 1

Because we are adding four sub-components, we set the component property four times. When you
assign to a property multiple times, you add new values rather than over-writing previous ones.

We have built a pTetR inverter device that contains its four genetic parts as sub-components.
However, we haven't specified anything about how these parts are to be assembled. There are two
complementary ways to specify this. Firstly, we can attach constraints on their relative positions.
Secondly, we can say exactly where the sub-components are located within the composite
component.

6. Composition using constraints and locations

Constraints

In this section we are going to explore constraints. Sequence constraints are declared using
the sequenceConstraint property. The values of this property
are sequenceConstraint instances. In this version of ShortBOL (v1.0) we are true to the SBOL

data model and so there is a bit of setting up to do.

SBOL currently defines three types of constraints. These are precedes, sameOrientationAs
and differentOrientationAs. These last two tell you if the two components share the same

orientation or have different orientations, but not what the orientation of either component is.

The constraint we need in this design is precedes. This says that one component comes before

the other in the design. In this way, we can place the genetic parts, left-to-right. In order to do this
we need to create a precedes relationship for pairs of Component sand then include them in a
Component to form the correct ordering as shown below:

The genetic parts of the TetR inverter

pTetR is a Promoter()

lacI_RBS is a RBS()

lacI_CDS is a CDS()

lacI_term is a Terminator()

pTetR_c is a Component(pTetR)

lacI_RBS_c is a Component(lacI_RBS)

lacI_CDS_c is a Component(lacI_CDS)

lacI_term_c is a Component(lacI_term)

The composite device for the TetR inverter

tetRInverter is a DnaComponent()

(

 # include the child components

 component = pTetR_c

 component = lacI_RBS_c

 component = lacI_CDS_c

 component = lacI_term_c

)

Example 2

Locations and ranges

In the previous section we saw how ShortBOL can describe the relative positions of children within a
parent design. Here we will see how it can give them exact positions. The SBOL property used to
position sub-components is called sequenceAnnotation. See example 3 below.

Let's unpack that a bit. Firstly, we have the parts for the inverter defined as DNAComponents and

then their corresponding Components also defined too. We then define some InlineRange objects

that define the sequence range that a genetic part exists in nucleotides on the composite sequence.
InLine means that the sequences are on the top strand. Similarly a ReverseComplementRange

could also be used here to indicate that the sequences lie on the bottom strand. The
InlineRange objects are then each used to create corresponding SequenceAnnotation

objects. We then define the tetInverter composite DnaComponent as in the previous examples
but also call the components and the sequenceAnnotation methods on DNAComponent

with the corresponding Component and SequenceAnnotation objects.

The genetic parts of the TetR inverter

pTetR is a Promoter()

lacI_RBS is a RBS()

lacI_CDS is a CDS()

lacI_term is a Terminator()

pTetR_c is a Component(pTetR)

lacI_RBS_c is a Component(lacI_RBS)

lacI_CDS_c is a Component(lacI_CDS)

lacI_term_c is a Component(lacI_term)

pair1 is a Precedes(pTetR_c, lacI_RBS_c)

pair2 is a Precedes(lacI_RBS_c, lacI_CDS_c)

pair3 is a Precedes(lacI_CDS_c, lacI_term_c)

The composite device for the TetR inverter

tetRInverter is a DnaComponent()

(

 # include the child components

 component = pTetR_c

 component = lacI_RBS_c

 component = lacI_CDS_c

 component = lacI_term_c

 # relative positions of child components

 sequenceConstraint = pair1

 sequenceConstraint = pair2

 sequenceConstraint = pair3

)

The value of sequenceAnnotation is actually a complex object. This expects four values;

the component to locate, the start and end coordinates, and a flag indicating if the construct is to be
inserted inline (on the forward strand), or reverseComplement (on the reverse backward

strand).

Example 3.

The genetic parts of the TetR inverter

pTetR is a Promoter()

lacI_RBS is a RBS()

lacI_CDS is a CDS()

lacI_term is a Terminator()

pTetR_c is a Component(pTetR)

lacI_RBS_c is a Component(lacI_RBS)

lacI_CDS_c is a Component(lacI_CDS)

lacI_term_c is a Component(lacI_term)

pTetR_loc is a InlineRange (1, 55)

lacI_RBS_loc is a InlineRange (56, 68)

lacI_CDS_loc is a InlineRange (l69, 1197)

lacI_term_loc is a InlineRange (1197, 1240)

pTetR_sa is a SequenceAnnotation (pTetR_loc)

lacI_RBS_sa is a SequenceAnnotation (lacI_RBS_loc)

lacI_CDS_sa is a SequenceAnnotation (lacI_CDS_loc)

lacI_term_sa is a SequenceAnnotation (lacI_term_loc)

tetRInverter is a DnaComponent()

(

 # include the child components

 component = pTetR_c

 component = lacI_RBS_c

 component = lacI_CDS_c

 component = lacI_term_c

 # absolute positions of child components

 sequenceAnnotation = pTetR_sa

 sequenceAnnotation = lacI_RBS_sa

 sequenceAnnotation = lacI_CDS_sa

 sequenceAnnotation = lacI_term_sa

)

Exercise 4: In the previous pTetR inverter positions example, we specified the positions of the four
parts. However, we haven’t specified their sequence. Add a second terminator lacI_term2 and add
the sequences to the example above so that the final SBOL design is able to generate the DNA
sequence for the pTetR-lacI_RBS-lacI_CDS-lacI_term-lacI_term2 device.

Answer 4:

#The sequences of the TetR inverter parts

pTetR_seq is a DnaSequence

("tccctatcagtgatagagattgacatccctatcagtgatagagatactgagcac")

lacI_CDS_seq is a DnaSequence

("gtgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctcttatcagaccgtttcccgcgtg

gtgaaccaggccccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacga

caggtttcccgactggaaagcgggcag")

lacI_RBS_seq is a DnaSequence ("aaggaggtg")

lacI_term_seq is a DnaSequence

("ttcagccaaaaaacttaagaccgccggtcttgtccactaccttgcagtaatgcggtggacaggatcggc

ggttttcttttctcttctcaa")

lacI2_term_seq is a DnaSequence

("ccggcttatcggtcagtttcacctgatttacgtaaaaacccgcttcggcgggtttttgcttttggaggg

gcagaaagatgaatgactgtccacgacgctatacccaaaagaaa")

The genetic parts of the TetR inverter

pTetR is a Promoter()

(

 sequence = lacI_term_seq

)

lacI_RBS is a RBS()

(

 sequence = pTetR_seq

)

lacI_CDS is a CDS()

(

 sequence = lacI_CDS_seq

)

lacI_term is a Terminator()

(

 sequence = lacI_term_seq

)

lacI2_term is a Terminator()

(

 sequence = lacI2_term_seq

)

Answer 4 contd.:

#Build components for each of the DNAComponents

pTetR_c is a Component(pTetR)

lacI_RBS_c is a Component(lacI_RBS)

lacI_CDS_c is a Component(lacI_CDS)

lacI_term_c is a Component(lacI_term)

lacI2_term_c is a Component(lacI2_term)

#Specify the range for each part

pTetR_loc is a InlineRange(1,55)

lacI_RBS_loc is a InlineRange(56,68)

lacI_CDS_loc is a InlineRange(169,1197)

lacI_term_loc is a InlineRange(1197,1240)

lacI2_term_loc is a InlineRange(1241,1280)

pTetR_sa is a SequenceAnnotation (pTetR_loc)

(

 component = pTetR_c

)

lacI_RBS_sa is a SequenceAnnotation (lacI_RBS_loc)

(

 component = lacI_RBS_c

)

lacI_CDS_sa is a SequenceAnnotation (lacI_CDS_loc)

(

 component = lacI_CDS_c

)

lacI_term_sa is a SequenceAnnotation (lacI_term_loc)

(

 component = lacI_term_c

)

lacI2_term_sa is a SequenceAnnotation (lacI2_term_loc)

(

 component = lacI2_term_c

)

tetRInverter is a DnaComponent()

(

 # include the child components

 component = pTetR_c

 component = lacI_RBS_c

 component = lacI_CDS_c

 component = lacI_term_c

 component = lacI2_term_c

 # absolute positions of child components

 sequenceAnnotation = pTetR_sa

 sequenceAnnotation = lacI_RBS_sa

 sequenceAnnotation = lacI_CDS_sa

 sequenceAnnotation = lacI_term_sa

 sequenceAnnotation = lacI2_term_sa

)

Modules
Up until now we have been building descriptions of the physical design, by describing the stuff that
makes it up. Usually, the physical parts are artifacts of achieving a desired behaviour, rather than
being an ends in their own right. The SBOL data standard provides a rich, compositional model for
describing the intended behaviour of a design, in parallel to the desired structure. This is captured by
the ModuleDefinition type. The ModuleDefinition data model groups together the participating
physical parts, their interactions, links to numerical models if they exist, and sub-modules. Here we
will cover the physical parts and their interactions.

A Module
In the functional design of the TetR inverter, the TetR protein represses the expression of the LacI
protein. To capture this functionality, we first need to create a module, and add components
for TetR and LacI to it. Then we add an interaction to say that TetR represses LacI. Here we are true
to the SBOL data model and so we need to create FunctionalComponents which in turn

become Participants in an Interaction as described below in Example 4.

Example 4

Example 4

The TetR and LacI proteins

TetR is a ProteinComponent()

LacI is a ProteinComponent()

TetR_fc is a FunctionalComponent(TetR,none)

LacI_fc is a FunctionalComponent(LacI,none)

#Make a participation for the two proteins

TetR_part is a Participation(TetR_fc, inhibitor)

LacI_part is a Participation(LacI_fc, inhibited)

#Make an Interaction for the participants

TetRLacI_int is a Interaction(genetic_production)

(

 participation = TetR_part

 participation = LacI_part

)

The TetR inverter module

TetR_inverter is a ModuleDefinition()

(

 description = "TetR inverter"

 functionalComponent = TetR_fc

 functionalComponent = LacI_fc

 interaction = TetRLacI_int

)

Exercise 5: The LacI inverter is very similar, but in this module LacI represses TetR. Write a script to
include this interaction.

Answer 5:

Composing Modules

In the previous section, we have built two modules, one for TetR inverter and one for the LacI
inverter. The next step is to combine these into a toggle-switch module. To do this, we create a new
ModuleDefinition that imports the two inverters. The basics for this are shown below.

Answer 5

The TetR and LacI proteins

TetR is a ProteinComponent()

LacI is a ProteinComponent()

TetR_fc is a FunctionalComponent(TetR,none)

LacI_fc is a FunctionalComponent(LacI,none)

#Make a participation for the two proteins

TetR_part is a Participation(TetR_fc, inhibitor)

LacI_part is a Participation(LacI_fc, inhibited)

#Make an Interaction for the participants

LacITetR_int is a Interaction(inhibition)

(

 participation = TetR_part

 participation = LacI_part

)

The TetR inverter module

LacI_inverter is a ModuleDefinition()

(

 description = "LacI inverter"

 functionalComponent = TetR_fc

 functionalComponent = LacI_fc

 interaction = LacITetR_int

)

toggleSwitch is a ModuleDefinition()

(

 description = “LacI/TetR toggle switch”

 module = TetR_Inverter

 module = LacI_Inverter

)

This composite module contains all of the behaviour of both the TetR and LacI inverter modules.
However, at the moment both of the inverters are 'black box', with completely independent
behaviour. What we want to do is glue them together, so that they are using the same pool
of TetR and LacI molecules. This will cause them to repress one-another, flip-flopping between
repressing TetR levels and LacI levels.

To achieve this, we need to wire components in the sub-modules. This is done using
the mapsTo property. We create placeholder components in the super-module, and then
use mapsTo to wire components in the sub-modules to that component. By wiring TetR from both
inverters to the same component in the super-module, we identify them with a shared molecule
pool. This couples the behaviour of the two inverters, so that one now affects the levels of
molecules used by the other. The other change in this example is that because the mapsTo property
is defined on the Module, we have to create the Module instance the long way, with an
explicit definition, rather than relying upon ShortBOL to generate one for us given a reference.

The final design that includes both Tet inverter and Lac inverter modules glued together to form the
final toggleswitch design is shown below in example 5. Note that here we have added the ‘inout’
parameter to the constructor of the FunctionalComponent class.

We have also included the Class MapsUseLocal which establishes that the TetR protein is the same
protein in both the TetR inverter and the LacI inverter and that the LacI protein also is the same protein in
both the TetR inverter and the LacI inverter, essentially linking their functionalcomponents to each
other.

Example 5

The TetR and LacI proteins

TetR is a ProteinComponent()

LacI is a ProteinComponent()

TetR_fc is a FunctionalComponent(TetR,inout)

LacI_fc is a FunctionalComponent(LacI,inout)

#Make a participation for the two proteins

TetR_part is a Participation(TetR_fc, inhibitor)

LacI_part is a Participation(LacI_fc, inhibited)

#Make an Interaction for the participants

TetRLacI_int is a Interaction(inhibition)

(

 participation = TetR_part

 participation = LacI_part

)

The TetR inverter module

TetR_inverter is a ModuleDefinition()

(

 description = "TetR inverter"

 functionalComponent = TetR_fc

 functionalComponent = LacI_fc

 interaction = TetRLacI_int

)

#The toggle switch module

TetR_map is a MapsUseLocal(TetR_lacinv_fc,TetR_fc)

LacI_map is a MapsUseLocal(LacI_lacinv_fc,LacI_fc)

toggleSwitch is a Module(TetR_inverter)

(

 description = "toggle switch"

 mapsTo = TetR_map

 mapsTo = LacI_map

)

#Make new FunctionalComponents

TetR_lacinv_fc is a FunctionalComponent(TetR,inout)

LacI_lacinv_fc is a FunctionalComponent(LacI,inout)

#Make a participation for the two proteins in the Lacinverter module

LacI_lacinv_part is a Participation(LacI_lacinv_fc, inhibitor)

TetR_lacinv_part is a Participation(TetR_lacinv_fc, inhibited)

#Make an Interaction for the participants in the Lacinverter module

LacITetR_int is a Interaction(inhibition)

(

 participation = TetR_lacinv_part

 participation = LacI_lacinv_part

)

Example 5 contd.

Acknowledgments

This document draws heavily on a original tutorial by Matt Pocock (see
http://shortbol.ico2s.org/tutorial.html#/) relating to an earlier Scala implementation version of
ShortBOL with a slightly different syntax.

The LacI inverter module

LacI_inverter is a ModuleDefinition()

(

 description = "LacI inverter"

 functionalComponent = TetR_lacinv_fc

 functionalComponent = LacI_lacinv_fc

 interaction = LacITetR_int

 module = toggleSwitch

)

http://shortbol.ico2s.org/tutorial.html#/

